

The Efficiency and CO₂ Emissions of Electric Vehicles

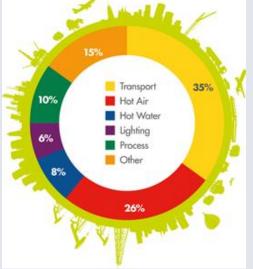
Dr Ian Taylor

Visiting Professor, School of Engineering

Presentation for IMechE Automobile Division Yorkshire, 19th Oct 2021

Where opportunity creates success

Overview of Presentation



- Why the focus on decarbonizing passenger cars?
- Comparison of different consumer transport options
 - Energy efficiency, CO₂ emissions, other emissions, cost etc.
- CO₂ content of electricity from different fuel types (UK Govt figures)
- Total lifecycle CO₂ emissions of EVs versus conventional vehicles
- What has happened to the UK electricity supply in the last 30 years?
- Freight fuel options for the future
- Discussion/Q&A

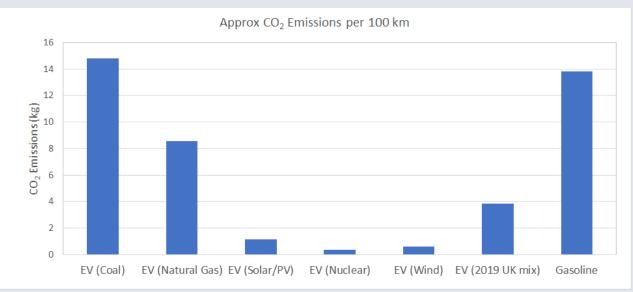
Why Focus on Decarbonizing Passenger Cars?

- Transport contributes 35% to worldwide CO₂ emissions(includes cars, trucks, planes, ships)
- Road transport (cars/buses) account for 45% of transport CO₂ emissions, with heavy duty trucks accounting for 29%

"Average" energy budget per person per day (for the UK) is around 125 kWh

Comparison of different transport options

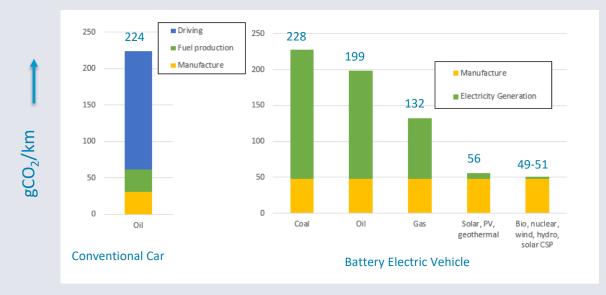
	Electric	Conventional	Hydrogen	Cycling
Energy to travel 100 km	15-25 kWh	6 litres gasoline ≈ 205 MJ ≈ <mark>57 kWh</mark>	1 kg H ₂ (≈ 50 kWh to make 1 kg H ₂ by electrolysis)	2.2 kWh (David MacKay book)
CO ₂ Emissions	≈ 4 kg (UK electricity mix)	\approx 14 kg	≈ 9 kg**	\approx 2 kg (food production)
Approx cost*	£2.70 - £4.50	£7.80	£10 - £14	£5 (food)
Refuelling time	20 mins to few hours (depends on charger)	3-5 mins	5 mins	A few hours!
Other emissions	No tailpipe emissions	NO _x & PM (impacts local air quality)	Water	None


* Assumes UK electricity price of 18p per kWh, petrol price of £1.30 per litre & current UK H₂ costs

** https://www.forbes.com/sites/rrapier/2020/06/06/estimating-the-carbon-footprint-of-hydrogen-production/

CO₂ Emissions from Electricity Fuel Type

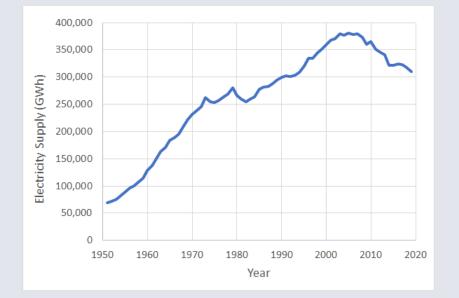
- Comparison of Electric and Conventional Vehicles
 - Electric vehicles no CO₂ emissions at tailpipe of vehicle, but there are CO₂ emissions at the power station – these depend on how electricity is generated
 - Data below shows approx. CO₂ emissions (kg) for 100 km (15 kWh or 6 litres of gasoline)



https://www.parliament.uk/globalassets/documents/post/postpn_383-carbon-footprint-electricity-generation.pdf

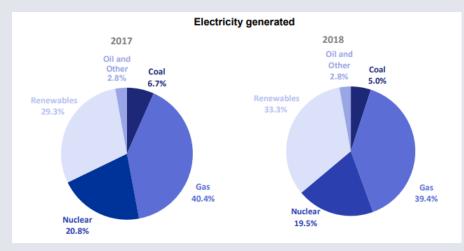
CO₂ Emissions – Lifecycle Analysis

- Comparison of Electric and Conventional Vehicles
 - CO₂ emissions generated during vehicle manufacture should also be included (graph below shows numbers from Holmberg & Erdemir 2019)



*Q. Qiao et al, "Life cycle greenhouse gas emissions of electric vehicles in China: Combining the vehicle cycle and fuel cycle", Energy, 2019 **Holmberg & Erdemir, "The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars", Trib. Int. 2019

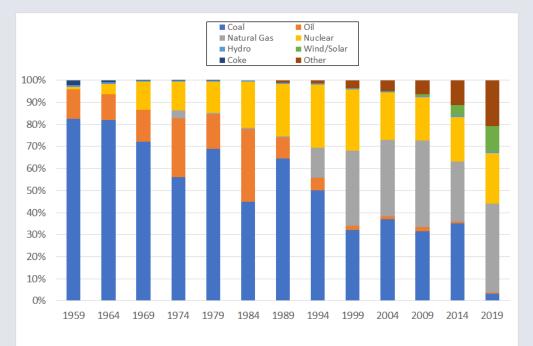
Some Data on the UK Electricity Grid



Historic UK electricity consumption & current mix of electricity generated

https://www.gov.uk/government/statistical-data-sets/historical-electricity-data

In 2018, 52.8% of UK electricity was from low carbon sources (nuclear and renewables)



https://assets.publishing.service.gov.uk/government/uploads/system/ uploads/attachment_data/file/791297/Press_Notice_March_2019.pdf

Some Data on the UK Electricity Grid

Changes in mix of UK electricity over time

https://www.gov.uk/government/statistical-data-sets/historical-electricity-data

Freight Options

• Table below shows CO₂ emissions for different freight options

	Train	Plane	Heavy Duty Truck	Ship
Current approx CO ₂ Emissions (grams per tonne km)	25	1200	40 (if fully loaded)	15 (average) 2-3 (bulk shipping)
Current Fuel Used	Electricity & diesel	Kerosene	Diesel/LNG/ CNG	Bunker fuel/Marine gas oil/LNG
Future Fuel Options	Electric/H ₂	Bio/ e-Kerosene	Electric/H ₂ / LNG/CNG/Bio	LNG/H ₂ / Electric/Bio/ Methanol/Nuclear
2020 CO ₂ Emissions (%)	0.3	2.5	8	2.5

Conclusions

- Electric cars can result in lower CO₂ emissions (compared to current petrol/diesel cars) provided the electricity grid has a high proportion of low carbon electricity generation
- In the UK, over 50% of electricity is now low carbon (wind/solar/nuclear) with much of the remainder gas (which has a lower carbon content than coal or oil)
- One challenge will be to decarbonize harder transport sectors (such as heavy-duty trucks, ships, planes, where electrification will not be as straightforward)

Useful Resources & Further Reading

- Book: "Sustainable Energy Without the Hot Air" David Mackay
- King Review of Low Carbon Cars (2007): <u>https://www.lowcvp.org.uk/assets/presentations/Julia%20King.pdf</u>
- Bloomberg electric vehicle outlook at: <u>https://about.bnef.com/electric-vehicle-outlook/</u>
- McKinsey electric vehicle forecast at: <u>https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/electric-mobility-after-the-crisis-why-an-auto-slowdown-wont-hurt-ev-demand#</u>
- Shell Sky Scenario: <u>https://www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html</u>
- Recent paper of mine on vehicle electrification: <u>https://www.mdpi.com/2075-4442/9/7/66</u>

Many thanks for attending the talk

Any questions?

RITaylor@uclan.ac.uk